DCC 1023 Steel Joints



BOLT AND NUT JOINT
Bolted joints are one of the most common elements in construction and machine design. They consist of fasteners that capture and join other parts, and are secured with the mating of screw threads.
There are two main types of bolted joint designs: tension joints and shear joints.
In the tension joint, the bolt and clamped components of the joint are designed to transfer the external tension load through the joint by way of the clamped components through the design of a proper balance of joint and bolt stiffness. The joint should be designed such that the clamp load is never overcome by the external tension forces acting to separate the joint (and therefore the joined parts see no relative motion).
The second type of bolted joint transfers the applied load in shear on the bolt shank and relies on the shear strength of the bolt. Tension loads on such a joint are only incidental. A preload is still applied but is not as critical as in the case where loads are transmitted through the joint in tension. Other such shear joints do not employ a preload on the bolt as they allow rotation of the joint about the bolt, but use other methods of maintaining bolt/joint integrity. This may include clevis linkages, joints that can move, and joints that rely on a locking mechanism (like lock washers, thread adhesives, and lock nuts).
Proper joint design and bolt preload provides useful properties:
  • For cyclic tension loads, the fastener is not subjected to the full amplitude of the load; as a result, the fastener's fatigue life is increased or—if the material exhibits an endurance limit its life extends indefinitely.[1]
  • As long as the external tension loads on a joint do not exceed the clamp load, the fastener is not subjected to motion that would loosen it, obviating the need for locking mechanisms. (Questionable under Vibration Inputs.)
  • For the shear joint, a proper clamping force on the joint components prevents relative motion of those components and the fretting wear of those that would result in fatigue cracks.
In both the tension and shear joint design cases, some level of tension preload in the bolt and resulting compression preload in the clamped components is essential to the joint integrity. The preload target can be achieved by applying a measured torque to the bolt, measuring bolt extension, heating to expand the bolt then turning the nut down, torquing the bolt to the yield point, testing ultrasonically or by a certain number of degrees of relative rotation of the threaded components. Each method has a range of uncertainties associated with it, some of which are very substantial.


Comments

Popular posts from this blog

LANGKAH ASAS MEMANAH

Konkrit Bertetulang

BANCUHAN KONKRIT